
EE 330 Laboratory 2

Cadence Schematic Capture and Simulation

Spring 2022

Contents
Background Information ... 2

Checkpoints ... 2

Part 1: Attaching Libraries .. 3

Part 2: Cell Creation .. 3

Part 3: Schematic Capture ... 4

Instantiating the components ... 5

Connecting the components .. 5

Adding labels .. 6

Editing object properties ... 7

Adding comments ... 8

Part 4: Circuit Simulation.. 9

DC Simulation Setup... 11

Transient Simulation Setup ... 11

AC Simulation Setup... 11

Setting up the outputs .. 12

Running the simulation and viewing the results ... 12

Deliverables .. 13

Part 5: ModelSim Introduction .. 14

Setting up ModelSim... 14

Starting a project ... 14

Simulating a project .. 18

Appendix A: Basic UNIX commands ... 20

Appendix B: Helpful Virtuoso Hotkeys .. 22

Background Information
In the previous lab, you gained access to the Linux environment and the Virtuoso tools you will need for

future labs. This week, the purpose is to go through some basic operations and examples in Virtuoso in an

attempt to gain familiarity. While the end result may not be very exciting, the content learned today will

be the fundamental building blocks to using the software. Eventually, by the end of the course, you will

be able to be assigned a larger and more challenging project and be able to work on it confidently.

The main parts for this lab will be placing components and getting familiar with Virtuoso’s layout and

schematic tools. Beyond this, you will gain the ability to simulate your circuits and run them through

different tests while graphing your results. Additionally, we will give you an introduction to ModelSim,

which is a Hardware Design Language (HDL) simulation software which we will use in this class to

simulate digital circuits.

As the semester continues, the labs will be less descriptive on processes that you should already know

how to do. For example, we will no longer be telling you to launch the Linux VDI and navigate to your

“ee330” folder before launching Virtuoso, instead just mentioning that you should launch Virtuoso. To

extend this notion from this lab to future lab, in this lab you will learn how to set up simulations and

obtain graphs and results, but future labs will just mention including the results in your report.

Checkpoints

The checkpoints for this lab are as follows:

1. DC Testbench Results

2. AC Testbench Results

3. Transient Testbench Results

4. ModelSim Waveform

As with all future labs, these checkpoints must be shown to a lab TA before the end of your next lab

section. You should include these checkpoints in your lab report.

Part 1: Attaching Libraries
In the last lab, you created a “lablib” library in Cadence Virutoso. This library will be the primary library

that we work in for the remainder of the course, however it is not ready to be used quite yet. Before we

can use it, we must “attach” a technology file to it so that Virtuoso knows what models to use and what

layout rules to follow. You’ll learn more about what a technology file is very soon, so don’t stress too

much about it yet.

To begin, open Virtuoso. If you have forgotten how to do that, first

navigate to your “ee330” folder in Linux (cd ~/ee330) and run the

Virtuoso command (virtuoso &). Once Virtuoso opens, click on your

Command Interpreter Window (CIW) to bring it to the front. Click on

“Tools” and then, in the dropdown menu, “Technology File Manager.

This will bring up the window seen on the left.

Click the “Attach” button. This will bring up a new window which

allows you to select a Design Library and a Technology Library. Set

the Design Library to “lablib” and the Technology Library to

“NCSU_TechLib_ami06,” as shown in the image below.

Once you have done this, click “Ok,” close the Technology File Manager window, and return to the

Library Manager Window (LMW) to continue with the lab. You will not need to repeat this step again

unless you choose to change technology libraries.

Part 2: Cell Creation
In Virtuoso, the most basic block which can be used in a design’s hierarchy is the “cell.” A cell can

represent any level of the hierarchy of a design. For example, at the bottom level of the hierarchy, a cell

may contain a single transistor or other basic circuit element. At the top level of the hierarchy, a cell may

contain interconnected cells to describe a complete system. In this way, a “cell” is nothing more than

another piece of the hierarchy.

Inside each cell is at least one “cell view,” which is a view that describes a specific aspect of the cell. For

example, a schematic is a cell view which describes the electrical connections of the cell. A layout is a

cell view which describes the physical placement and routing of the items contained within the cell. A

symbol is a cell view which describes the way that the cell will be graphically represented if used in other

cells. If you don’t fully understand this yet, that’s OK; you’ll gain familiarity with cells and cell views as

you use them in lab.

Let’s go ahead and create a new cell. To create a new cell and one of its cell views simultaneously, in the

Library Manager Window (LMW), first select (click) the library in which you want the new cell to reside

in. Next, click on File→New→Cell View… in the LMW, then type the name of the new cell in the Cell

field and choose the desired view.

Following this procedure, create a new cell called lab1 with schematic view in the lablib library. Then

click OK. The software will automatically launch the appropriate editor for the chosen view. This is

illustrated in Fig.1.

Figure 1: Pop-up for Creating Cell Views

The first step in a new design is typically something you scribble on a notepad. Once you have a good

idea of what is that you are trying to design and how that circuit should work, the next step is to verify

your idea using a simulator. The next section describes the basics of the schematic capture tool in

Virtuoso used to prepare a circuit for simulation.

Part 3: Schematic Capture
To practice schematic capture, we will create the circuit shown in the Pre-lab section. You should already

have the schematic editor window open editing the schematic view of the cell lab1. The first step is to

instantiate all the required components.

Instantiating the components
To place all the components in the schematic window, click on menu item Create→Instance. You will

see two windows popping up on the screen (shown below): “Component browser” and “Add Instance”.

In the “Component Browser”, change the library to

“analogLib” and click on “Flatten” to see all the

cells without categorization. Now find the resistor

cell and click on it (The resistor cell is called res).

Notice how the “Add Instance” form changes to

reflect the selection of resistor with a default value

of 1K. Change the value of the resistor to 10K. Do

not click in the Schematic window yet! Just move

your cursor over an empty space in the schematic

window. You will see a yellow-colored resistor

“floating” with the cursor. If you click anywhere in

the window, a copy of the resistor will be placed. Try it. If you need a component at a different

orientation, right-click with your mouse, or click on “Rotate”, “Sideways”, or “Upside Down” in the

“Add Instance” form.

All the resistors that are placed in the schematic window will have resistance of 10K. What if you needed

a different valued resistor? Just click on the “Add Instance” form, change the value, and then click in the

window to get a component with the adjusted value.

Once you have enough resistors, instantiate a capacitor (cap), ground (gnd), and a voltage source

(vsource) from analogLib. Match the capacitors capacitance with the value shown in the prelab. Press

“Esc” key to end the instantiation mode. Your

Schematic Editor window should look something like

Fig. 3.

Figure 3: Schematic Editor Window for cell lab1

Connecting the components
There are two ways to interconnect components. First, use the menu entry Create→Wire (narrow) to get

into the wiring mode (You could also have pressed the shortcut “w” key or clicked on the Add-Wire

(narrow) icon). When in wiring mode, click on the red terminal of a component to start one end of the

Figure 2: Instance Creation pop-up

TIP
You can use keyboard shortcuts for
common tasks. These can greatly
improve speed and efficiency. For
example, in the schematic editor “I”
brings up “Add Instance”. Keyboard
shortcuts are listed next to their
menu entries and a list of useful
Virtuoso commands is provided at the
end of this document.

wire (you do not need to keep the button down). Now click on the other component’s terminal where you

want the connection to terminate. If you make a mistake and want to quit the wiring mode, press the

“Escape” key on the keyboard. You can undo the last action by pressing “u” and redo it by pressing “Shift

u”.

The second way to add wiring is to first bring the mouse pointer over the red terminal of a component’s

terminal. While clicking and holding the mouse button, drag you mouse, and you will see a wire started.

You can let go of the button now and the wiring will continue. Hit “Escape” anytime to cancel. Unlike the

first method, the wiring mode automatically terminates with the completion of one connection.

Complete wiring the circuit. To make sure there are no floating components or connection problems, we

need to “Check and Save” the design. Click on the icon or the “Check and Save” entry from the “File”

menu. Check the CIW window to make sure the design was saved without errors. The information

outputted into the CIW may be overwhelming at first, but you are encouraged to take time to filter

through it anyways. The CIW is a critical tool for debugging problems in Virtuoso.

Adding labels
As you wire the components together, every net is automatically assigned a name such as net1, net2, etc.

These names are fine for the software but are not easy for us to remember. Adding labels to wires helps

us to interact with the tools more efficiently. To add a label to a wire, click on the menu item

Create→Wire Name (or use shortcut “l”). In the form, type “vIn vMid vOut”. Bring your mouse

pointer into the schematic window. If you do not see the “floating” vIn attached to your cursor, you first

need to click on the title bar of the schematic window to make it active. Now you should see the vIn

attached to the mouse pointer. Click your mouse pointer on the net you wish to call vIn. Note how the

next label from the list you typed in the form appears once you have placed the first label. This is a

convenient way of adding multiple labels without having to go back and forth between the form and the

schematic window.

Labels provide functionality in addition to being visual aids: connectivity. If two unconnected nets have

the same name, they are considered to be electrically connected (this may come in handy later when

connection multiple components to VDD and VSS). This feature can allow you to create schematics with

less clutter but can also be a source of mistakes. Use the capability of labels to create connectivity

judiciously or your schematics may actually become less readable.

Figure 4:Schematic showing interconnected components and net labels

Editing object properties
What if you made a typing mistake when creating labels or need to modify the value of a component?

You can make the required changes by clicking on the object which you want to change and then clicking

Edit→Properties→Objects (q).

For practice, let us modify the properties of the voltage source component, vsource. The vsource

component is capable of generating a variety of stimuli.

Bring up the properties form for vsource. In the next section, we will run dc, ac, and transient simulations.

For those simulations to work, we need to configure the vsource object to provide appropriate input

stimuli.

TIP

It is possible, and often preferable,
to use other sources from
analogLib, such as vdc for dc only
and vsin for sine waves. vsource has
multiple options, so it is used here
to be able to switch between them
easily.

DC

simulation

In the “DC voltage” box, type 1. This dc voltage is used to compute the quiescent

operating point of the circuit (you’ll learn more about that in the future). Click on apply

(at the bottom of the form). This is the input for dc analysis.

AC analysis

input

Find the entry “Display small signal params” and turn the option on. The form will

update to display new form fields. Add 1V in the “AC magnitude”. This input value

will be used for the AC analysis.

Transient

analysis

You need to set the “Source type” field to the type you need to generate, in this case

you need a step function (i.e. what options from the dropdown will get you a step

function?). Instead of telling you exactly what to set it to, we’ll let you play with it so

you can gain familiarity with the different source types. Once you have entered all the

applicable entries, click on OK.

The vsource component is now configured for simulations. Click on “Check and save” to save your

design. Correct any errors or warnings before proceeding further.

Adding comments
Especially for larger designs (for example, your final project), it is good practice to add comments to the

schematics. Click on Create→Note→Text… and fill out the form. The comments are useful reminders

to yourself about the particular schematic and can also provide instructions for others if you share your

schematics.

Part 4: Circuit Simulation

Once the schematic capture is complete, we can simulate the circuit to test if it performs according to the

design. To do this, we first open the Analog Design Environment (ADE) window. To open the ADE

window, click on Launch→ADE Assembler while in the schematic tool. There should be a popup

asking if you want to create a new view or open an existing one. When first creating a simulation you will

want to create a new one, after that to open an existing simulation you can choose “open existing view”.

For now, Create New view and make sure the correct cell is selected and press ok. A new view should

appear in the LMW called maestro.

A new window should now pop up where you can set up

simulations for your schematics. The left of the window should

look like this:

Figure 5: ADE Assembler (On The Left)

In order to set up a simulation click on add test, and then kit “Ok” in the new window. This will take you

to ADE Explorer, which has a similar widow layout where you can set the specifics of your simulation.

In the future where you may have multiple tests set up, it may be useful to name the tests. To do this, in

the ADE Assembler window select the test you want to rename (it should have a colored background

after being selected) and then click once again. This will make the text field editable. You can name the

test making sure it doesn’t include any spaces.

TIP
Always click “check and save”
before running a simulation.
Changing anything in the schematic
will make the simulation fail unless
a “check and save” is run. Save
often. Cadence tools have a
tendency to crash, although this
occurs more often for more
complex designs. Using “save”
instead of “check and save” will
save whatever you are currently
working on without a pop-up box
pointing out errors and possibly not
saving.

Figure 6: ADE Explorer (On the Left)

After opening the ADE Explorer window by clicking add test, go to Setup → Save Options. You will

see a Results Location section in the field, set the Project Directory path to:

/local/[username]/simulation

Having your project directory set to this location will keep your simulation data stored on the /local/

rather than eating up your account space. It is also highly recommended to keep on deleting the old

simulation data from time to time so that everyone can have enough /local/ space.

Once you have ensured that your project directory is correct, go to Setup → Model Libraries… and

check that you see a window which looks similar to the figure below.

Figure 7: Model Libraries

Make sure one of the lines in this window says “$CDK_DIR/models/spectre/standalone/ami06P.m” and

one says “$CDK_DIR/models/spectre/standalone/ami06N.m”. You should have both lines in your model

libraries, but if you are missing one, copy and add the missing line simply by copying the path from this

lab document and pasting it into the line that says “Click here to add model file.” If you fail to do this, the

ADE will not know where to obtain the model libraries from and will fail to simulate your circuit.

Change test name (Do not use spaces)

DC Simulation Setup
From Figure 6, Click on Click to add analysis. This will cause the pop-up form “Choosing Analysis” to

appear. We will first run a dc analysis. Click on the button next to dc in the form. The form contents will

update to show entries relevant to a dc analysis. We would like to save the dc operating point and sweep

the input voltage from 0 to 5 volts. To save the DC operating point, click the ”Save DC Operating Point”

checkmark. To sweep the input dc voltage, we first need to select the appropriate parameter to sweep. In

the “sweep variable” box area, click on the “component parameter”

button. The updated form is shown on the right.

To select the dc input voltage of the vsource, click on “Select

component” and then click on vsource in the schematics window.

In the new form that pops up, click on the first entry, dc, to choose

the dc voltage of the vsource. Hit OK. You would follow a similar

procedure to sweep another parameter of a source, if desired.

Next, enter the range of sweep in the start and stop boxes. Click on

Apply for all these changes to take effect. This completes the dc

analysis setup. Click Apply to close the form and return to ADE

Explorer.

Transient Simulation Setup
A transient analysis is nothing more than an analysis which runs

for a specific amount of time. To setup a transient analysis, click

Click to add analysis and then select “tran.” Put the desired length

of time that you want to run the analysis in the “Stop Time” field. It

is up to you to decide how long you should run your simulation.

Remember, the goal here is to prove that your results from the pre-lab are correct. Note that you can do

small increments of time by typing the value and unit right by each other. For example, for 1𝜇𝑠, type

“1u” into the Stop Time field. Typing “1 u”, “1u s”, or any other modification will not work.

Once you have entered the duration that you want the simulation to run for, click OK to close the form

and return to the ADE. You should now have two simulations showing in the “Analyses” section in the

ADE.

AC Simulation Setup
An AC analysis is an analysis which plots the magnitude of a signal as the frequency of the input sinusoid

changes. You can think of it as being similar to a DC sweep, but with a frequency being swept instead. It

is useful for determining the frequency response of a circuit.

To setup an AC analysis, click Analysis→Choose and then select “ac.” The simulation configuration area

should update and default to have the Sweep Variable set to “Frequency.” In the Sweep Range, select

“Start-Stop” and choose the starting and stopping frequency for your simulation. It is not necessary to

include “Hz” at the end of your frequencies. Remember that the goal of this simulation is to prove that

Figure 8: Analysis Setup

your pre-lab work is correct. To do this, consider sweeping frequencies which are within 1𝑑𝐵 of your

anticipated corner frequency and checking that signal is the expected magnitude at your corner frequency.

An example setup is provided below. This setup is defining an AC analysis which will sweep from

1𝑚 𝐻𝑧 to 1𝑀 𝐻𝑧. Notice that the “m” and “M” suffixes are located immediately after the number. Do not

put a space between the number and the suffix. Also do not include “Hz.”

Once you have entered your desired frequency sweep, click OK to close the form and return to the ADE.

You should now have three simulations showing in the “Analyses” section in the ADE.

Setting up the outputs
We need to tell the simulator which node voltages we are interested in plotting once the simulation is

complete. To choose which signals to plot, click on the menu item

At the top of the ADE Explorer window, click on Outputs→To be Plotted →Select on Schematics.

The bottom of the ADE tells you to select the outputs you want plotted. Clicking on a net or a label

selects voltage of the net to be plotted. Find the schematics window and click on the three labels we

added earlier. Once done, press the escape key to get out of this selection mode. If you fail to hit the

escape key, next time you enter the schematic window to change something, it will continue adding nets

to your simulation.

Running the simulation and viewing the results
Now that we have setup the analyses that we intend to perform and selected the outputs that we are

interested in, let us run the simulation. Begin by unchecking the “Enable” option for two of the analyses

that you created, just leaving one checked. Then, click on the green arrow icon to run the simulation.

Cadence may take a moment to crunch the numbers, but once the simulation is complete, a waveform

viewer window should come up with the plots of the outputs you selected in the previous step. Virtuoso’s

waveform viewer, just like everything else with Virtuoso, is powerful. In this class, though, we’ll only

use the basic tools offered in the viewer. The image below highlights a number of buttons in the viewer;

below the image, a description of what each button does is provided.

Number Button Name (Hotkey) Function

1 Save Image Saves a high-quality image of the plotted waveform. When

screenshotting waveforms, use this tool instead of KSnapshot. When

using this tool, have it replace the background color with white.

2 Create Marker Allows you to create point (hotkey: M), vertical (hotkey: V), and

horizontal (hotkey: H) markers on your plot. This is useful for

collecting data and should be used whenever appropriate.

3 Fit (F) Fits all waveforms on both the X- and the Y-axis.

4 Zoom In by 2 (]) Zooms in by a factor of two

5 Zoom Out by 2 ([) Zooms out by a factor of two

6 Fit Y to Visible X Fits the Y-axis

7 Combine All Analog Traces Combines waveforms into one overlapping plot.

8 Split Current Strip Splits waveforms into individual plots. Unless you want plots

overlapping, use this.

9 N/A The properties of each signal can be modified by right-clicking on

the signal’s name. To improve readability in your lab report, you

should always change the signal “Width” to “Thick”, the “Style” to

“Solid”, and the “Color” to something unique and easy to see on a

white background.

Deliverables
Make sure your DC, AC, and transient analyses match what you have in your prelab and what you expect

to get. If they don’t match, try to figure out why. Is your simulation wrong? Did you set a component

parameter wrong? Is your prelab wrong? Take the time to figure out what’s wrong, why, and how to fix

it; that’s what our job as engineers is.

Once your DC, AC, and transient analyses match your prelab, ask to show your plots to your lab TA. If

your results are correct, the TA will “mark off” your checkpoints. Make sure to save an image of each

waveform, plus anything else that may be useful, for your lab report. Refer to the previous page for help

on saving the waveforms in high quality. You will probably want to include an image of your schematic

in your report. To do so, in the schematic editor, go to File→Export Image. Give your image a name,

choose a location to save it, and tell the tool to change the background color to white. Then, save the

image.

Part 5: ModelSim Introduction
 Setting up ModelSim
Throughout this course, in addition to working on analog circuits, we will be using Verilog

to simulate and design digital circuits and systems. Verilog is what is known as a hardware

design language (HDL), and is one of the languages used heavily by designers doing digital

VLSI to create digital circuits. The tool that we use to run Verilog code is called

“ModelSim.”

To set up ModelSim, first download EE330ModelsimEnvironment.sh and move it to your

home directory (~/). Next, open a terminal window and run the following command

source ~/EE330ModelsimEnvironment.sh

Before proceeding, check that all setup steps completed successfully. The output of your

terminal should look similar to the following image

Figure 9: ModelSim setup success

Once you successfully run the setup script, create a new directory for your verilog files and navigate to

that folder. Once in this folder, you can start verilog. This can be done using the following commands.

mkdir verilog

cd ~/verilog

vsim &

Starting a project
Once ModelSim opens, the next step is to create a new project. To do so, begin by clicking

on File, then New, then choose Project on the drop-down menu. Enter your project name

(this does not affect anything, “myVerilog” or “verilogTest” would work), then choose your

project location. Leave the default library name as work and click OK.

Figure 10: Creating a new Modelsim Project.

On the offchance that you close your project by accident, you can re-open it by clicking on

File and Open. You can then navigate to the folder you saved your project in, tell the File

Viewer to look for “Project Files (*.mpf)”, and open the missing file. Note that the Filer

Viewer by default will only look for HDL files; it is critical that you change it to look for

project files (see image below).

After creating your project, you will be presented with the Add Items to Project dialog.

While you can use this dialog to create new source files or add existing ones, we will not be

using this option for this lab. We’ll add source files later, so just click on the Close button.

You now have an empty project by the name of “myVerilog”.

Now that we have an empty project, we want to add a new file to it. To do so, right click in

the project area, choose Add to Project, and choose New File… In the dialog that opens,

choose Verilog as the file type and set File name to the desired name of the file you are

adding. In this case, name the file “inverter.” Once done, you can click OK.

You should now see an inverter.v file added to your project. Double-click on the inverter.v

file to show the file contents. The text will appear very small; press ctrl + until the text is

visible. You are now ready to specify the inverter module’s functionality. Remember from

prior coursework that there are 2 main ways of specifying a module in Verilog. One is a

functional view where the logic is explicitly defined in terms of AND’s, OR’s, and other

logic that can be converted directly into gates. The other method is called a behavioral view,

where the logic is more indirect. A behavioral description often uses conditional statements

and loops.

Complete the inverter specification as shown below. Be sure to save the changes made to the

intverter.v file by clicking on File and choosing Save:

An explanation of each line of code is provided below:

• The line `timescale 1ns/ 1ps is located at the top of the file. The Verilog language uses

dimensionless time units, and these time units are mapped to “real” time units within

the simulator. The identifier `timescale is used to map to the “real” time values using

the statement `timescale <time1> / <time2>, where <time1> indicates the time units

associated with the #delay values, and the <time2> indicates the minimum step time

used by the simulator.

Note: Be sure to use the correct (`) character. The (`) is the not the single quotation

mark (‘) and is typically located on the same key as the ~. If you have errors in your

file, this may be the culprit.

• The inverter module is declared using the module inverter(); line and ended using the

endmodule statement. Putting variables inside of the declaration parentheses defines

`timescale 1ns/1ps

module inverter (Vin, Vout);

input Vin;

output Vout;

wire Vout;

assign Vout = ~Vin;

endmodule

ports that the module will use for inputs and outputs. The exact purpose of these ports

is stated afterwards, with the input Vin;, output Vout;, and wire Vout; lines.

• The inverter’s core functionality is achieved through the assign Vout = ~Vin; line.

This line sets the output of the module, Vout, to the opposite of Vin.

Once we have defined the inverter specification, we need to add a testbench to validate its

functionality. Essentially, with the inverter.v file we created a model such that it inverts an

input. When running a simulation, though, we would have to specify what that input is. By

creating a testbench function, we can have the inputs flip automatically and observe the

outputs. To do so, create a new Verilog file in the myVerilog project (in the same way that

you created the inverter.v file) and call it “inverter_tb.v”. Then we add the functionality of

the testbench module as shown below. Note, we use the inverter function we created in

inverter.v and feed it inputs that we have automatically iterate.

An explanation of each line is provided below:

• `timescale 1ns/1ps : sets how long an operation lasts. This is used later in the #20 A <=

~A line, which means every 20 timescale interval set A to equal not A.

• module [Name](Parameters); the [Name] is the actual name of the device, to

be referenced by other devices. The Parameters are all inputs and outputs, things that

can be accessed by other devices.

• reg A; This sets A as a register, which means it can be controlled using statements

later.

• initial begin

 A = 1'b0;

end : initial sets the initial state of things inside of it, in this case the register A being

set to 0. Because A is 1 bit long A = [bits]’b[inary]0, if A were 4 bits it would be A

= 4’b0000. The ‘begin’ and ‘end’ work like parenthesize in other programs, they

allow multiple lines to be controlled by the ‘initial’ above.

• always

 #20 A <= ~A; always@(event) causes what is inside the always statement to

occur when the event occurs. always@(posedge Clock) will cause whatever is in it

to happen when a signal called Clock becomes positive from negative. If ‘always’

has no @ statement it happens whenever any signal changes in the code. The #20

A <= ~A means every 20 timescales A becomes not A (1→0, 0→1).

`timescale 1ns/1ps

module inverter_tb();

reg A;

wire B;

inverter inv(.Vin(A), .Vout(B));

initial begin

A = 1'b0;

end

always

 #20 A <= ~A;

endmodule

• endmodule : designates the end of the program.

Notice that the inputs of the inverter module are now defined differently. The inputs of

inverter.v are given values (like applying a bias from a voltage source on a real test bench to

a circuit on a breadboard) and the outputs are observed to see if they match expectations.

More detailed testbenches can be written and the skill of writing good testbenches is heavily

desired. Often the testbench takes longer to write and requires more skill than the actual

module, and thus a good testbench will be thorough but efficient to reduce wasted resources.

After saving both “inverter.v” and “inverter_tb.v”, we want to check the syntax of both files.

To do so, click on the Compile Menu and select Compile All. If the syntax was correct, a

checkmark will appear next to each file. If the syntax was incorrect, the window at the

bottom will list the individual errors.

Simulating a project
Now that we have created the inverter, its testbench, and both files have compiled, it is time

to simulate the digital design. To do so, type “vsim -novopt work.inverter_tb -suppress

12110” into the Transcript section at the bottom of the ModelSim window. If you wanted to

simulate a different module, you would replace “inverter_tb” with the name of the module

you wanted to simulate. ModelSim will begin creating new windows as it prepares to

simulate; give it a second to settle before continuing.

Once ModelSim has settled, we need to create a simulation waveform window. To do so,

click on the View menu and choose Wave. This will open a blank waveform viewer. To add

the signals that we would like to monitor, we can drag the signal from the middle pane

(immediately to the left of the waveform window) to the waveform window, as shown here:

With the signals added to the waveform viewer, we are now ready to simulate the design. To

do so, begin by entering 80ns as the length of time we would like to simulate for in the Run

Length box and click the Run icon. The waveform viewer should populate with two signals.

ModelSim has a peculiar bug which causes it to not update the x-axis timescale after

simulation. You can see this yourself by looking at the timescale shown in the waveform

viewer. To correct this, just hit “F” (the shortcut for fitting signals in the waveform viewer)

on your keyboard. You should end up with something that looks like this:

Our simple simulation is complete. Does this waveform match your expectation of an

inverter? Why or why not? What is wrong with this waveform when comparing to reality?

How will this affect simulations of more complex logic?

Show the output to your lab TA so that they can mark you down for the final checkpoint and

take a screen shot of the final waveform to include in your lab report.

Appendix A: Basic UNIX commands
This appendix introduces some basic commonly used UNIX commands. The

following notation is used: words in the fixed width font are commands you need to type

exactly, words in the italic font are to be substituted with appropriate words for your

intended purpose, and words within square brackets [] are optional. Unix command as well

as file names are casesensitive.

gedit filename

Opens the file filename if it exists. If the file filename does not exist, a new file by

that name is created. Instead of gedit, you can use any text editor of your choice.

Some popular editors include vi, pico, emacs, etc.

ls -l [directory]

Lists the contents of the directory. If no directory name is supplied, contents of the

current directory are listed.

cp source_file target_file

Copies the source_file to a new file named target_file.

mv old_filename new_filename

Moves/renames the old_filename to new_filename. If the target new_filename

includes a path, the file is renamed and moved to that path. It can also be used to

rename directory.

rm trash_file

Removes/deletes the unwanted trash_file. Note that file removed cannot be

"undeleted", so make sure you know what you are going to delete.

mkdir new_directory

Makes a new subdirectory named new_directory within the current directory.

cd [directory]

Change current directory to the given directory. If no directory name is provided, the

current directory will change to user's home directory.

pwd

Shows the present working directory

rmdir trash_directory

Remove/delete the unwanted trash_directory.

man command

Show the manual of the command. You can learn more detail about any given

command

using man, e.g. man ls shows all available options and functionalities for ls

command.

more filename

Shows the contents of a file one screen at a time.

ps

Shows the currently running processes.

A couple of useful special symbols

~

The symbol ~ is used to denote the user’s home directory. If the complete path of the

home directory happens to be / home/username/ , then using ~ represents that

complete string. For example, if you want to look at the contents of a file in your

home directory, the following commands produce the same result

 more /home/username/myfile more ~/myfile

&

When launching a program that opens in a new window, placing an “&” at the end

of the command line allows the user to keep access to the command line, i.e., the

“&” instructs the program to run in the background.

These are just a few shell commands you need to know to get started. You are encouraged

and advised to learn other UNIX commands on your own, as they will increase your

productivity, i.e., more you know, more efficient you will be.

Appendix B: Helpful Virtuoso Hotkeys
Key Schematic Editor

q Open component properties

l Add net label

i Instantiate new component

p Add pin

Shift + Delete “Comment” component out of

schematic

w Add wire

